Физика, опубликовано 2018-08-22 19:56:11 by Гость
Вверх по наклонной плоскости с углом наклона к горизонту 45° пущена шайба со скоростью 12 м/с. Через некоторое время она останавливается и соскальзывает вниз. С какой скоростью она вернется в исходную точку? Коэффициент трения шайбы о плоскость 0,8.
Ответ оставил Гость
1) уравнение закона сохранения энергии для подъема шайбы:
(m v0²)/2 = mgh + Aтр, где Aтр - работа силы трения
v0² = 2gh + u gcosα S, где S - длина той части горки, по которой проехалась шайба. ее можно выразить как S = h / sinα. с учетом этого, получаем:
v0² = 2gh (1 + u ctgα),
откуда высота подъема шайбы равна:
h = v0² / 2g (1 + u ctgα).
2) уравнение закона сохранения энергии для спуска шайбы:
mgh = (m v²)/2 + Aтр.
аналогично выполняя преобразования, находим, что искомая скорость шайбы равна:
v = sqrt(2gh (1 - u ctgα).
с учетом выражения для h, получаем:
v = sqrt( (v0² (1 - u ctgα)) / (1 + u ctgα) ).
v = sqrt( 144*(1 - 0.6)/1.6) = 6 м/c
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Физика.
