Геометрия, опубликовано 2018-08-22 23:18:22 by Гость
Помогите пожалуйста с задачей! Срочно! Прямая, параллельная основаниям трапеции ABCD, пересекает ее боковые стороны АВ и CD в точке Е и F соответственно. Найдите длину отрезка EF, если AD=45,BC=20, CF:DF=4:1. Это 9 класс.
Ответ оставил Гость
BE/AE=CF/DF по теореме фалеса.
Проведем BK параллельную CD, а точку пересечения BK с EF Отметим точкой O. Получатся параллелограммы BCKD, BCFO и OFDK.
KD=BC=20 (противоположные стороны параллелограмма)
KD=OF=20 (противоположные стороны параллелограмма)
AK=AD-KD=45-20=25
EO║AK ⇒ ∠BEO=∠BAK; ∠BOE=∠BKA (т. к. это соответственные углы)
Рассмотрим ΔABK и ΔEBO:
1) ∠BEO=∠BAK
2) ∠BOE=∠BKA
Следовательно ΔABK и ΔEBO подобны. ⇒ EO/AK=BE/AB=4/5 ⇒ EO=25*(4/5)=20
EF=EO+OF=20+20=40.
Ответ: 40.
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
