Аватар
Геометрия, опубликовано 2018-08-22 23:36:21 by Гость

Две окружности радиусов 7 см и 2 см, не имеющие общих точек, имеют общую касательную, которая не пересекает отрезок, соединяющий их центры. Найдите длину общей касательной, если расстояние между центрами окружностей равно 13 см.

Аватар
Ответ оставил Гость

Радиусы проведенные в точки касания перпендикулярны к касательной,значит они параллельны, получаем трапецию прямоугольную. известны основания 2 и 7 и одну боковую сторону 13 .  проведем высоту трапеции ее надо найти, по т. Пиф..из прям. треуг.. 169 = 25 + h в кв..
 h = 12, искомая величина

Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.