Аватар
Геометрия, опубликовано 2018-08-22 01:17:07 by Гость

В трапеции длина одной из диагоналей равна сумме длин оснований, а угол между диагоналями равен 60°. Докажите, что трапеция – равнобедренная.

Аватар
Ответ оставил Гость

В трапеции АВСД АД║ВС, АС=АД+ВС, ∠АОД=∠ВОС=60°.
В трапеции с проведёнными диагоналями, треугольники с основаниями АД и ВС и вершинами в точке пересечения диагоналей, подобны.
ВС:АД=СО:ОА, и ВС+АД=СО+ОА, значит ВС=СО, АД=ОА.
Равнобедренный треугольник с одним из углов, равным 60° является правильным.
Тр-ки АОД и ВОС - правильные. 
ВО=СО, АО=ДО, значит диагонали АС и ВД равны, следовательно трапеция АВСД - равнобедренная.
Доказано.

Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.