Аватар
Геометрия, опубликовано 2018-08-22 01:38:25 by Гость

1)Параллельно стороне АС в треугольнике АВС проведён отрезок DE (D-лежит на стороне АВ, E-на стороне ВС). Найдите отрезок DE, если АВ= 15 см, АС= 18 и АD= 7,5 см 2)В трапеции АВСD диагонали АС и ВD пересекаются в точке О, АО:СО= 3:1. При средней линии трапеции, равной 24, найдите его основания.

Аватар
Ответ оставил Гость

Треугольники ABC и DBE подобны. У них все углы равны. Тогда
DE/AC=DB/AB
DB=AB-AD=15-7,5=7,5 см
DE/18=7,5/15
DE=18/2
DE=9 см

В трапеции AD/BC=3/1, тогда AD=3*BC.
Так средняя линия равна 24, то
AD+BC=24*2=48
3*BC+BC=48
4*BC=48
BC=48/4
BC=12
AD=3*12=36

Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.