Аватар
Геометрия, опубликовано 2018-08-22 02:33:54 by Гость

Две вершины центр вписанной окружности и точка пересечения высот остроугольного треугольника лежат на одной окружности Найдите угол при Третьей вершине

Аватар
Ответ оставил Гость

Пусть окружность проходит через вершины А и B треугольника ABC, H - точка пересечения высот и О - центр вписанной окружности. Т.к. О - точка пересечения биссектрис, то  ∠AOB=90°+∠C/2. Т.к. ∠AOB и ∠AHB опираются на общую дугу и ∠AHB - смежный к углу равному ∠С, то ∠AOB=∠AHB=180°-∠С. Итак,  90°+∠C/2=180°-∠С, откуда ∠С=60°.

Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.