Геометрия, опубликовано 2018-08-22 02:53:13 by Гость
В окружность вписан равносторонний треугольник ABC. На дуге AC взята произвольная точка M. Длины отрезков MA и MB соответственно равны 2 и 10. Найдите длину MC.
Ответ оставил Гость
Ну тут весь "прикол" в том, что ∠AMB = ∠BMC = 60°; и само собой ∠AMC = 120°;
Если для краткости обозначить AB = BC = AC = a; AM = x = 2; MB = y = 10; MC = z; то теорема косинусов сразу дает
x^2 + y^2 - xy = a^2;
z^2 + y^2 - zy = a^2;
z^2 + x^2 + xz = a^2;
Пригождается второе и третье соотношения, из них получается
y^2 - zy = x^2 + xz; или y^2 - x^2 = z(x + y);
y - x = z;
Это и есть ответ, z = 10 - 2 = 8;
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
