Аватар
Геометрия, опубликовано 2018-08-22 03:21:16 by Гость

Дан треугольник со сторонами AB=5 BC=7 AC=8. Из вершины B опущены перпендикуляры BM и BN на биссектрисы внешних углов при вершинах A и C (биссектрисы лежат в той же полу- плоскости, что и вершина B). Найти длину отрезка MN.

Аватар
Ответ оставил Гость

Если продолжить перпендикуляры из вершины В до пересечения с продолжениями стороны АС в точках Р и Е, то получим:
РА = АВ, СЕ = СВ.
Отрезок МN = это средняя линия треугольника РВЕ,
Отрезок РЕ = 5+8+7 = 20,
МN = 20/2 = 10.

Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.