Геометрия, опубликовано 2018-08-22 03:33:22 by Гость
Доказать если центры вписанной и описанной окружности лежат на медиане треугольника,то этот треугол. рабвнобед.
Ответ оставил Гость
Т.к. центром вписанной окружности является точка пересечения биссектрис, а центром описанной окружности является точка пересечения серединных перпендикуляров, а медиана, проведённая к основанию равнобедренного треугольника, является и биссектрисой, и высотой, а серединный перпендикуляр совпадет с данной медианой, то и центр описанной окружности, и центр вписанной окружности будут лежать на одном отрезке - медиане равнобедренного (или равностороннего треугольника, который является частным случаем равнобедренного треугольника).
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
