Аватар
Геометрия, опубликовано 2018-08-22 06:53:32 by Гость

Касательные в точках А и В к окружности с центром в точке О пересекаются под углом 68 градусов. найдите угол АВО

Аватар
Ответ оставил Гость

Пусть касательные пересекаются в точке С. Соединим точку С с центром окружности О. Рассмотрим треугольники САО и СВО. Они прямоугольные (АО и ВО - радиусы, которые перпендикулярны к касательным). Углы АСО и ВСО равны, т.к. СО - биссектриса (по свойству касательных, проведенных к окружности из одной точки). Следовательно они равны 68:2=34. Углы АОС и ВОС равны 90-34=56.
Следовательно угол АОВ =56+56=112.

Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.