Аватар
Геометрия, опубликовано 2018-08-22 07:32:22 by Гость

Четырехугольник ABCD вписан в окружность. Его диагонали AC и BD пересекаются в точке Е. Найдите BD,если АВ=ВС=4 и ВЕ=корень2.

Аватар
Ответ оставил Гость

Т.к. AB=BC, то ∠BAC=∠BCA. Т.к. углы BCA и BDA опираются на одну дугу, то они равны. Т.е. ∠BAC=∠BDA. Значит треугольники BAE и BDA подобны по двум углам (∠B у них общий). Значит AB/BD=BE/AB, т.е. 4/BD=√2/4. Отсюда BD=8√2.

Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.