Геометрия, опубликовано 2018-08-22 08:23:49 by Гость
В равнобедренном прямоугольном треугольнике с катетом, равным 8 см, найдите высоту, опущеную из вершины прямого угла
Ответ оставил Гость
Сначала найдём гипотенузу по теореме Пифагора: a^2+b^2=c^2, c=√a^2+b^2, а так как треугольник равнобедренный, то катеты равны между собой, = √64+64=√128=8√2 см.
В равнобедренном треугольнике, высота, опущенная на основу, является и биссектрисой, и медианой. Высота делит прямоугольный треугольник на ещё 2 равных прямоугольных треугольника. В этих малых треугольниках катетами являюся половина гипотенузы и высота. А катет большого треугольника — гипотенузой малого. Значит все также по теореме Пифагора: а^2=h^2+(c/2)^2. h = √a^2-(c/2)^2=√64-32=√32=4√2 см.
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
