Аватар
Геометрия, опубликовано 2018-08-22 08:51:29 by Гость

Помогите пожалуйста!!! Ребро МА тетраэдра МАВС перпендикулярно к плоскости АВС, АВ=ВС=АС=8 см., МА=12 см. Найти двугранный угол МВСА.

Аватар
Ответ оставил Гость

Если АВ=ВС=АС=8 см, то основание - равносторонний треугольник.
Двугранный угол МВСА - это угол между гранью ВСА и основанием.
Проведём перпендикулярное сечение к ребру ВС (это линия пересечения заданных плоскостей) через МА.
Получим прямоугольный треугольник МАД, где угол МДА и есть искомый угол.
АД (высота равностороннего треугольника) равна 8*сos30 =
= 8*(√3/2) = 4√3 см.
Тогда искомый угол МДА равен:
arc tg 3/√3 = 60°.

Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.