Геометрия, опубликовано 2018-08-22 09:23:39 by Гость
Найти площадь правильного четырёхугольника, если радиус описанной около него окружности равен 3 см. 9 класс. Прошу отвечать пользователей, хорошо разбирающихся в геометрии. Пожалуйста, подробное решение или объяснение, чтобы понять...
Ответ оставил Гость
Дано:
R= 3 см
Правильный четырехугольник- это квадрат.
Найти: S-?
Решение:
Точка пересечения диагоналей квадрата и центр окружности, описанной вокруг него, совпадают. Отсюда можно сделать вывод, что диагональ квадрата- это диаметр окружности, а полудиагональ- радиус окружности.
Sкв= a^2, где а- это сторона квадрата.
Сторона квадрата, вписанного в окружность находится по формуле: а= R*sqrt(2).
*sqrt- корень квадратный
Подставляем в формулу.
Sкв= (R*sqrt(2))^2=(3*sqrt(2))^2= 9*2=18 см^2
Ответ: 18 см^2
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
