Аватар
Геометрия, опубликовано 2018-08-22 09:47:35 by Гость

Точки M и E середины ребер AC и AB правильного тетраэдра ABCD соответственно, P-точка пересечения медиан треугольника BDC. Найдите угол между прямыми MP и DE.

Аватар
Ответ оставил Гость

Примем длину рёбер заданного тетраэдра за 1.
Определим координаты всех заданных точек.
Для этого поместим пирамиду точкой А в начало координат, точку В - на оси ОУ.
Координаты точки А    Координаты точки B     Координаты точки C
 ax    ay     az                    bx   by       bz             cx     cy       cz
  0     0        0                     0        1       0          0.866    0.5      0

Координаты точки Д             Координаты точки Е
 дx        дy       дz                      Еx     Еy     Еz
0.2887 0.5 0.8165                      0       0.5    0

Координаты точки Р             Координаты точки М
Рx            Рy         Рz             Мx      Мy      Мz
0.3849  0.66667  0.2722          0.433  0.25       0.

Находим координаты векторов МР и ДЕ.
                                                              
x               y               z             
Вектор МР={xР-xМ, yР-yМ, zР-zМ}-0,048113  0,4166667 0,27216553ВекторДЕ={xЕ-xД, yЕ-yД, zЕ-zД}   -0,288675          0       -0,81649658.

Косинус угла между векторами определяем по формуле:
cos /alpha  = /frac{|axbx+ayby+azbz|}{ /sqrt{ax^2+ay^2+az^2}* /sqrt{bx^2+by^2+bz^2}}.

Подставив координаты векторов в формулу, получаем:
cos
α = 0,20833333 /0,433012702  = 0,48112522.

Данному косинусу соответствует угол:
α = 1,0688585 радиан или  61,241082°.  

Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.