Аватар
Геометрия, опубликовано 2018-08-22 11:01:50 by Гость

Периметры подобных треугольников относятся как 3:4, а сумма их средних по величине сторон равен 112см. найдите стороны обоих треугольников если стороны одного из них относятся как 4:8:7.

Аватар
Ответ оставил Гость

Т.к. периметры подобных треугольников относятся как длины соответствующих сторон, то, например, для указанных в задаче средних по величине сторон справедливо такое же отношение как и для периметров треугольников, т.е. 3:4.
Пусть а,b,c и А, В, С - соответствующие стороны подобных треугольников. Из сказанного выше следует, что b:B=3:4. Отсюда b= /frac{3}{4} B
По условию b+B=112. Решим уравнение:
B+ /frac{3}{4} B=112 ///frac{7}{4} B=112 // B= /frac{112*4}{7} =64/ =/ /textgreater / b=/frac{3}{4} *64=48
Пусть для одно из треугольников a:b:c=4:8:7. Тогда на длину 48 приходится 8 равных частей (всего частей 4+8+7=19). Одна часть равна 48:8=6. Отсюда а=4*6=24 и с=7*6=42.
Стороны одно из треугольников найдены и равны 24; 48 и 42.
Стороны второго треугольника больше в  /frac{4}{3} раза соответствующих сторон первого треугольника. Найдем их.
B=64;/ A= /frac{4}{3} a=/frac{4}{3} *24=32;/ C=/frac{4}{3} c=/frac{4}{3} *42=56
Стороны другого треугольника тоже найдены и равны 32; 64 и 56.
Ответ: 24; 48; 42 и 32; 64; 56.

Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.