Аватар
Геометрия, опубликовано 2018-08-22 12:31:06 by Гость

Дан выпуклый четырёхугольник. Докажите, что четырёхугольник с вершинами в серединах сторон данного четырёхугольника является параллелограммом.

Аватар
Ответ оставил Гость

ABCD - выпуклый четырехугольник (любой)
1. АС - диагональ
ΔАВС:
М- середина стороны АВ
Р - середина стороны ВС
МР - средняя линия ΔАВС
MP||AC, MP=AС/2
ΔADC:
N - середина стороны AD
L - середина стороны CD
NL - средняя линия ΔADC
NL||AC
NL=AC/2
=>MP=NL

2. BD - диагональ
ΔBDC: P - середина стороны ВС
L - середина стороны CD
PL - средняя линия ΔBDC
ΔBAD: MN - средняя линия
PL||MN
PL=MN

четырехугольник MPLN - параллелограмм

Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.