Геометрия, опубликовано 2018-08-22 13:52:14 by Гость
Помогите проверить! основание пирамиды треугольник стороны которого 1 и 2 а угол между ними равно 60° ,боковые ребра равны √13 .Найти обьем пирамиды
Ответ оставил Гость
Треугольная пирамида, все боковые ребра равны, => высота пирамиды проектируется в центр описанной около треугольника (основания пирамиды) окружности.
радиус описанной около произвольного треугольника окружности вычисляется по формуле:
AC=1, BC=2,
AB²=AC²+BC²-2*AC*Bc*cos
AB²=3, AB=√3
прямоугольный треугольник:
гипотенуза с=√13 - боковое ребро пирамиды
катет а=√3 радиус описанной около треугольника окружности
катет Н -высота пирамиды, найти по теореме Пифагора:
c²=a²+H², H²=(√13)²-(√3)². H=√10
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
