Аватар
Геометрия, опубликовано 2018-08-22 17:53:28 by Гость

Основание пирамиды - треугольник со сторонами 5, 5 и 6. Высота пирамиды проходит через центр круга, вписанного в этот треугольник и равна 2. Найдите площадь боковой поверхности пирамиды.

Аватар
Ответ оставил Гость

В пирамиде, основание высоты которой лежит в центре вписанной в основание окружности, апофемы боковых граней равны.
Радиус вписанной окружности: r=S/p,
По формуле Герона S=√(p(p-a)(p-b)(p-c)), где р=(a+b+c)/2.
р=(5+5+6)/2=8.
S=√(8(8-5)²(8-6))=12,
r=12/8=1.5
В тр-ке, образованном найденным радиусом, высотой пирамиды и апофемой, последняя равна: l=√(r²+h²)=√(1.5²+2²)=2.5
Площадь боковой поверхности: Sбок=P·l/2=p·l=8·2.5=20 (ед)² - это ответ.

Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.