Аватар
Геометрия, опубликовано 2018-08-22 21:48:19 by Гость

Найти периметр прямоугольника вписанный в равнобедренный прямоугольный треугольник,если его большая сторона находится на гипотенузе,две вершины на катетах,гипотенуза 45,а его стороны в соотношении как 5:2

Аватар
Ответ оставил Гость

Обозначим стороны вписанного прямоугольника 2х и 5х.
Вершины его на катетах делят их на отрезки 2х/(сos45°) и 5x*cos45°.
Катеты равны 45*cos45° = 45*(√2/2) = 22,5√2.
Отсюда составляем уравнение 2х/(сos45°) + 5x*cos45° = 22,5√2.
2х/(√2/2) + 5х*(√2/2) = 2√2х + 2,5√2х = 22,5√2.
4,5х = 22,5,
х = 22,5/4,5 = 5.
Стороны прямоугольника равна 2х=2*5 = 10  и 5х = 5*5 = 25.
Периметр равен 2*10 + 2*25 = 70.

Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.