Аватар
Геометрия, опубликовано 2018-08-22 22:04:26 by Гость

Через середину Д стороны АВ треугольника АВС проведены прямые перпендикулярные биссектрисам углов АВС и ВАС .Эти прямые пересекают стороны АС и ВС в точках М и К соответственно. Докажите что АМ=ВК Заранее спасибо. Срочно нужно.

Аватар
Ответ оставил Гость

Рассмотри треугольники ВКD и АМD. 
В них основания перпендикулярны биссектрисам, а биссектрисы перпендикулярны по условию основаниям -
в Δ ВКD основанию КD, 
в Δ АМD основанию МD. 
Следовательно, биссектрисы являются в этих треугольниках и высотами. Треугольник, в котором биссектриса является одновременно высотой - равнобедренный. 
Треугольники ВКD и АМD равнобедренные. 
По условию ВD=АD. 
Следовательно, боковые стороны этих треугольников равны, отсюда ВК=АМ.

Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.