Геометрия, опубликовано 2018-08-22 22:08:16 by Гость
Основанием прямой призмы является ромб с углом 60. меньшее из двух сечений призмы, которые проходят через пары боковых ребер, не принадлежащих одной грани, является квадратом, площадь которого равна 9. найдите площадь основания призмы
Ответ оставил Гость
Меньшее из сечений, проходящее через такую пару рёбер, проходит так же через малые диагонали призмы.
Так как сечение - квадрат, то малая диагональ ромба равна √9=3.
В равнобедренном треугольнике, ограниченном малой диагональю ромба и двумя сторонами ромба, угол при вершине равен 60°, значит у основания лежат углы в 60°, следовательно тр-ник правильный. Стороны ромба равны малой диагонали.
Площадь основания (ромба): S=а²·sinα=3²·√3/2=9√3/2 (ед²) - это ответ.
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
