Геометрия, опубликовано 2018-08-22 22:08:30 by Гость
Основание равнобедренного треугольника равно 2 см. Медиана, проведенная к его боковой стороне, образует с этим основанием угол, равный 60°. Найти эту медиану.
Ответ оставил Гость
Пусть m- медиана, x- боковая сторона, a=2cм -основание, α-угол между основанием и боковой стороны. Запишем 3 уравнения теоремы косинусов:
1) m²=a²+x²/4-2*a*x/2*cosα=4+x²/4-2x*cosα
2) x²=a²+x²-2ax*cosα=4+x²-4xcosα ⇔ cosα=1/x
3) x²/4=a²+m²-2am*cos60=4+m²-2m
Подставляем косинус из второго уравнения в первое.Получим:
m²=4+x²/4-2 ⇔ x²=4m²-8; Подставим получившееся в 3е уравнение. Получим:
m²-2=4+m²-2m
2m=6
m=3
Ответ: Медиана равна 3 см
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
