Геометрия, опубликовано 2018-08-22 23:00:21 by Гость
Найти длину окружности вписанной в равнобокую трапецию с основаниями 4 см и 16 см
Ответ оставил Гость
Радиус окружности, вписанной в равнобедренный трапецию, равен половине среднему геометрическому оснований, т.е. r = √(ab)/2, где а и b - основания трапеции.
r = √(4•16)/2 = 4 см.
Длина окружности l равна 2πr
l = 2π•4см = 8π см (или ≈25,14 см).
Ответ: l = 8π см.
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
