Геометрия, опубликовано 2018-08-22 00:51:19 by Гость
Диагональ равнобедренной трапеции делит тупой угол пополам. Меньшее основание трапеции равно 3, ее периметр равен 42. Найдите высоту трапеции.
Ответ оставил Гость
Если равны углы при диагонали, то один из треугольников, образуемых данной диагональю, является равнобедренным. Следовательно большее основание равно обеим боковым сторонам.
Пусть основание - х.
P = 3+х+х+х
3+3х = 42
3х = 39
х = 13 - большее основание.
меньшая часть основания, отсекаемого высотой, равна:
(13-3):2 = 5
находим высоту равнобедренной трапеции - по теореме пифагора в треугольнике, составленным высотой, боковой гранью и меньшей частью основания, отсекаемой этой высотой.
h = √(13 ²-5²) = √144 = 12
находим площадь:
S = 1/2(a+b)*h = 1/2(3+13)*12 = 192/2 = 96
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
