Геометрия, опубликовано 2018-08-22 00:55:56 by Гость
Центр окружности радиуса r=20 описанной около трапеции лежит на одном из оснований.Найдите периметр трапеции, если один из его углов равен 60 градусов Помогите пжл, очень нужно
Ответ оставил Гость
Пусть АВСД - трапеция. Центр описанной окружности лежит на основании АВ. значит АВ равно диаметру окружности, АВ=2r=40.
Треугольники АВО, ВСО и СДО - равнобедренные т.к. АО=ВО=СО=ДО.
В трапеции АВСД ∠А=60°, значит ∠В=180-60=120°.
В тр-ке АВО ∠ВАО=∠АВО=60°, значит он правильный.
В тр-ке ВСО ∠ОВС=120-∠АВО=120-60=60°, значит ∠ВСО=60°, следовательно ΔВСО - правильный.
Аналогично ΔСДО - правильный.
Треугольники АВО=ВСО=СДО ⇒ ОА=АВ=ВС=СД=ОД=r.
Периметр трапеции равен: Р=5r=5·20=100.
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.
