Аватар
Геометрия, опубликовано 2018-08-22 00:59:02 by Гость

Являются ли пифагоровыми треугольниками следующие треугольники: а) с гипотенузой 25 и катетом 15; б) с катетами 5 и 4.

Аватар
Ответ оставил Гость

Прежде чем решать задачу вспомним теорию:
что такое "Пифагоров треугольник"? 

будем говорить о Пифагоровой тройке: Это такие натуральные числа у которых выполняется равенство a^2+b^2=c^2.
т.е. Пифагоров треугольник это треугольник с целочисленными значениями для которых выполняется данное равенство.

Египетский треугольник это частный случай Пифагорова треугольника, т.е.  к такому набору дополняется условие что 

a^2+b^2=c^2
a:b:c= 3:4:5

Пример числа 5,12,13 - Пифагоровы т.к. справедливо что 
5^2+12^2=13^2
но они не будут образовывать Египетский треугольник
т.к. 5:12:13 ≠ 3:4:5



Теперь перейдем к решению: 

1) Найдет все стороны треугольника

По т. Пифагора второй катет: 
 /sqrt{25^2-15^2}= /sqrt{400}=20

Измерения треугольника 15,20,25

Этот треугольник Пифагоров т.к. стороны выражены целыми числами и справедливо равенство  15²+20²=25²

Проверим, будет ли такой треугольник Египетским: 

Египетский треугольник: 
Это прямоугольный треугольник с целочисленными сторонами и отношение сторон 3:4:5

Проверим отношение сторон в нашем треугольнике

15:20:25= 3:4:5

Значит такой треугольник Пифагоров и как частный случай Египетский

2) Треугольник с катетами 4,5

найдем гипотенузу

 /sqrt{4^2+5^2}= /sqrt{16+25}= /sqrt{41}

по определению измерение гипотенузы не целочисленное- значит такой треугольник не будет Пифагоровым

Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Геометрия.