Аватар
Математика, опубликовано 2018-08-22 23:51:54 by Гость

Колличество целых решений неравенства x^3*|x^2-10x+16|>0 на промежутке (-1;7] равно?

Аватар
Ответ оставил Гость

X^3*|x^2-10x+16|=x^3*|(x-2)(x-8)|>0
Поскольку модуль неотрицателен, разделим на него обе части неравенства без смены знака при условии, что x
≠2 и x≠8. То есть неравенство сводится к системе неравенств:
x^3>0,
x≠2,
x≠8.
Из первого неравенства x>0.
На промежутке (-1;7] целыми решениями являются 1,3,4,5,6,7.
Поэтому их 6.
Ответ: 6.

Вопрос
Не нашли ответа?
Если вы не нашли ответа на свой вопрос, или сомневаетесь в его правильности, то можете воспользоваться формой ниже и уточнить решение. Или воспользуйтесь формой поиска и найдите похожие ответы по предмету Математика.